A JIP3-regulated GSK3β/DCX signaling pathway restricts axon branching.
نویسندگان
چکیده
Axon branching plays a critical role in establishing the accurate patterning of neuronal circuits in the brain. However, the mechanisms that control axon branching remain poorly understood. Here we report that knockdown of the brain-enriched signaling protein JNK-interacting protein 3 (JIP3) triggers exuberant axon branching and self-contact in primary granule neurons of the rat cerebellar cortex. JIP3 knockdown in cerebellar slices and in postnatal rat pups in vivo leads to the formation of ectopic branches in granule neuron parallel fiber axons in the cerebellar cortex. We also find that JIP3 restriction of axon branching is mediated by the protein kinase glycogen synthase kinase 3β (GSK3β). JIP3 knockdown induces the downregulation of GSK3β in neurons, and GSK3β knockdown phenocopies the effect of JIP3 knockdown on axon branching and self-contact. Finally, we establish doublecortin (DCX) as a novel substrate of GSK3β in the control of axon branching and self-contact. GSK3β phosphorylates DCX at the distinct site of Ser327 and thereby contributes to DCX function in the restriction of axon branching. Together, our data define a JIP3-regulated GSK3β/DCX signaling pathway that restricts axon branching in the mammalian brain. These findings may have important implications for our understanding of neuronal circuitry during development, as well as the pathogenesis of neurodevelopmental disorders of cognition.
منابع مشابه
GSK3β and CREB3 Gene Expression Profiling in Benign and Malignant Salivary Gland Tumors
Background: Salivary gland tumors (SGT) are rare lesions with uncertain histopathology. One of the major signaling pathways that participate in the development of several tumors is protein kinase A. In this pathway, glycogen synthase kinase β (GSK3β) and cAMP responsive element binding protein (CREB3) are two genes which are supposed to be down regulated in most human tumors. The expression lev...
متن کاملGSK3β regulates AKT-induced central nervous system axon regeneration via an eIF2Bε-dependent, mTORC1-independent pathway
Axons fail to regenerate after central nervous system (CNS) injury. Modulation of the PTEN/mTORC1 pathway in retinal ganglion cells (RGCs) promotes axon regeneration after optic nerve injury. Here, we report that AKT activation, downstream of Pten deletion, promotes axon regeneration and RGC survival. We further demonstrate that GSK3β plays an indispensable role in mediating AKT-induced axon re...
متن کاملDyrk kinases regulate phosphorylation of doublecortin, cytoskeletal organization, and neuronal morphology.
In a neuronal overexpression screen focused on kinases and phosphatases, one "hit" was the dual specificity tyrosine phosphorylation-regulated kinase (Dyrk4), which increased the number of dendritic branches in hippocampal neurons. Overexpression of various Dyrk family members in primary neurons significantly changed neuronal morphology. Dyrk1A decreased axon growth, Dyrk3 and Dyrk4 increased d...
متن کاملDoublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures.
Here we studied doublecortin (DCX) in cultured hippocampal and sympathetic neurons during axonal development. In both types of neurons, DCX is abundant in the growth cone, in which it primarily localizes with microtubules. Its abundance is lowest on microtubules in the neck region of the growth cone and highest on microtubules extending into the actin-rich lamellar regions. Interestingly, the m...
متن کاملNetrin-1 induces axon branching in developing cortical neurons by frequency-dependent calcium signaling pathways.
A single axon can innervate multiple targets by collateral branching. Axon branching is thus essential for establishing CNS connectivity. However, surprisingly little is known about the mechanisms by which branching is regulated. Axons often stop elongating before branches develop and anatomical and molecular data suggest that axon branching occurs independent of axon outgrowth. We found that n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 50 شماره
صفحات -
تاریخ انتشار 2010